Computer Controlled Fluidization and Fluid Bed Heat Transfer Unit, with SCADA and PID Control

Key features:

- Advanced Real-Time SCADA and PID Control.
- Open Control + Multicontrol + Real-Time Control.
- Specialized EDIBON Control Software based on LabVIEW.
- National Instruments Data Acquisition board (250 KS/s, kilo samples per second).
- Calibration exercises, which are included, teach the user how to calibrate a sensor and the importance of checking the accuracy of the sensors before taking measurements.
- Projector and/or electronic whiteboard compatibility allows the unit to be explained and demonstrated to an entire class at one time.
- Capable of doing applied research, real industrial simulation, training courses, etc.
- Remote operation and control by the user and remote control for EDIBON technical support, are always included.
- Totally safe, utilizing 4 safety systems (Mechanical, Electrical, Electronic & Software).
- Designed and manufactured under several quality standards.
- Optional ICAI software to create, edit and carry out practical exercises, tests, exams, calculations, etc. Apart from monitoring user’s knowledge and progress reached.
- This unit has been designed for future expansion and integration. A common expansion is the EDIBON Scada-Net (ESN) System which enables multiple students to simultaneously operate many units in a network.

For more information about Key Features, click here
INTRODUCTION

When a current of fluid (gas or liquid) flows through a bed of particles, the growing friction between them and the fluid makes the particles of the bed, from a specific flow rate, be suspended in the fluid, not resting on one another. The bed takes a volume larger than the volume it has when that fluid does not flow. Under these conditions, it can be considered that a fluid bed has been formed, since the solid particles behave as the fluid particles, moving freely by gravity effect or being pumped. The main characteristic is that the temperature in every point of the bed is constant, due to the fact that heat transfer is very effective.

Thanks to this property, the drying process fluidized beds is nowadays an efficient alternative for food products dehydration, granular solids drying, such as grains, fertilizers, chemicals and minerals, etc.

GENERAL DESCRIPTION

The Computer Controlled Fluidization and Fluid Bed Heat Transfer Unit, “TTLFC”, has been designed to provide visual and quantitative results related to the flow of air through a packed bed and a fluidized bed made of granular material. It provides clear experimental possibilities for the research of the heat transfer in a fluidized bed.

The main element is a glass chamber, lit from behind, where a granular material is contained. A fluid (air), supplied to the bed through the bottom thanks to a distributor, passes through that material. Nine different distributors are provided so that they can be compared during the process. They have different number of orifices, different sizes of orifices and different distribution of orifices.

Air is expelled through the upper side of the chamber, crossing a filter that removes the particles that may have been dragged by the air when crossing the bed before releasing it to the atmosphere.

When the air speed is slower that the so-called expansion rate, the flow only crosses the fixed bed. When the speeds are faster than that expansion rate, the bed is softened, so that the state of the solid particles change, being suspended and forming a fluidized bed.

To regulate this flow of air the unit has a regulation valve at the inlet and a flow sensor formed by an orifice plate to measure that flow of air.

The chamber of the bed has a heating element for the study of the heat transfer in the fluidized bed, measuring the pressure and temperature of the inlet air, the temperature of the outlet air, the temperature of the fluidized bed, the temperature of the heating element surface and the supplied heating power. Both the temperature sensors of the bed and the heating element as the heating element itself may be vertically displaced, enabling to perform the practical exercises at different heights of the chamber.

The pressure drop in the bed can be determined with a differential pressure sensor.

Two types of granular material of different size are supplied to form the bed.

This Computer Controlled Unit is supplied with the EDIBON Computer Control System (SCADA), and includes: The unit itself + a Control Interface Box + a Data Acquisition Board + Computer Control, Data Acquisition and Data Management Software Packages, for controlling the process and all parameters involved in the process.

PROCESS DIAGRAM AND UNIT ELEMENTS ALLOCATION
With this unit there are several options and possibilities:
- Main items: 1, 2, 3, 4, 5 and 6.
- Optional items: 7, 8, 9, 10 and 11.
Let us describe first the main items (1 to 6):

1 TTLFC. Unit:

Bench-top unit.

Anodized aluminum frame and panels made of painted steel.

Main metallic elements made of stainless steel.

Diagram in the front panel with distribution of the elements similar to the real one.

Pressure regulator and filter. It is supplied fixed to 3 Bar.

Regulation valve to regulate the flow of air at the inlet of the bed chamber.

Bed chamber:

- Cylinder made of glass where the granular material that forms the bed is contained.
- Back light to facilitate the visualization of the fluidized bed.

It includes:

- Computer controlled heating element:
 - Cylindrical heating element with copper coating:
 - Transfer area: 20.4 cm².
 - Maximum power: 150 W.
 - Potentiometer that regulates the current to the heating element.
 - Heating power measurement with a wattmeter.
 - “J” type temperature sensor on the surface of the heating element.
 - Control temperature sensor that prevents the temperature from exceeding 150º C.

- Filter at the top of the chamber.
- Distributor at the bottom of the bed chamber. Nine different distributors are included with different number of orifices, different sizes of orifices and different distribution of orifices.
- Graduated scale to measure the height of the bed.
- Two “J” type temperature sensors to measure:
 - Bed temperature.
 - Air temperature at the outlet of the chamber.

Granular material:

- 1 Kg (170 – 300 microns).
- 1 Kg (250 – 420 microns).

Safety tank made of PMMA to prevent overpressures in the chamber.

Air flow sensor at the inlet of the chamber formed by one orifice plate and two pressure sensors. Flow range: 0 – 200 l/min.

“J” type temperature sensor to measure the air temperature at the inlet of the chamber.

Pressure sensor to measure the air pressure at the inlet of the chamber. Range: 0 – 100 PSI.

Differential pressure sensor to measure the pressure drop in the bed. Range: 0 – 1 PSI.

The complete unit includes as well:

- **Advanced Real-Time SCADA and PID Control.**
- Open Control + Multicontrol + Real-Time Control.
- Specialized EDIBON Control Software based on LabVIEW.
- National Instruments Data Acquisition board (250 KS/s, kilo samples per second).
- Calibration exercises, which are included, teach the user how to calibrate a sensor and the importance of checking the accuracy of the sensors before taking measurements.
- Projector and/or electronic whiteboard compatibility allows the unit to be explained and demonstrated to an entire class at one time.
- Capable of doing applied research, real industrial simulation, training courses, etc.
- Remote operation and control by the user and remote control for EDIBON technical support, are always included.
- Totally safe, utilizing 4 safety systems (Mechanical, Electrical, Electronic & Software).
- Designed and manufactured under several quality standards.
- Optional ICAI software to create, edit and carry out practical exercises, tests, exams, calculations, etc. Apart from monitoring user’s knowledge and progress reached.
- This unit has been designed for future expansion and integration. A common expansion is the EDIBON Scada-Net (ESN) System which enables multiple students to simultaneously operate many units in a network.
Complete Technical Specifications (for main items)

② TTLFC/CIB. Control Interface Box:
The Control Interface Box is part of the SCADA system.
Control interface box with process diagram in the front panel and with the same distribution that the different elements located in the unit, for an easy understanding by the student.
All sensors, with their respective signals, are properly manipulated from -10V to +10V computer output.
Sensors connectors in the interface have different pines numbers (from 2 to 16), to avoid connection errors.
Single cable between the control interface box and computer.
The unit control elements are permanently computer controlled, without necessity of changes or connections during the whole process test procedure.
Simultaneous visualization in the computer of all parameters involved in the process.
Calibration of all sensors involved in the process.
Real time curves representation about system responses.
Storage of all the process data and results in a file.
Graphic representation, in real time, of all the process/system responses.
All the actuators’ values can be changed at any time from the keyboard allowing the analysis about curves and responses of the whole process.
All the actuators and sensors values and their responses are displayed on only one screen in the computer.
Shield and filtered signals to avoid external interferences.
Real time PID control with flexibility of modifications from the computer keyboard of the PID parameters, at any moment during the process.
Real time PID and on/off control for pumps, compressors, heating elements, control valves, etc.
Real time PID control for parameters involved in the process simultaneously.
Proportional control, integral control and derivative control, based on the real PID mathematical formula, by changing the values, at any time, of the three control constants (proportional, integral and derivative constants).
Open control allowing modifications, at any moment and in real time, of parameters involved in the process simultaneously.
Possibility of automatization of the actuators involved in the process.
Three safety levels, one mechanical in the unit, another electronic in the control interface and the third one in the control software.

③ DAB. Data Acquisition Board:
The Data Acquisition board is part of the SCADA system.
PCI Express Data acquisition board (National Instruments) to be placed in a computer slot. Bus PCI Express.
Analog input:
Number of channels= 16 single-ended or 8 differential. Resolution=16 bits, 1 in 65536.
Sampling rate up to: 250 KS/s (kilo samples per second).
Input range(V)= ±10 V. Data transfers=DMA, interrupts, programmed I/O. DMA channels=6.
Analog output:
Number of channels=2. Resolution=16 bits, 1 in 65536.
Maximum output rate up to: 900 KS/s.
Output range(V)= ±10 V. Data transfers=DMA, interrupts, programmed I/O.
Digital Input/Output:
Number of channels=24 inputs/outputs. DI or DI Sample Clock frequency: 0 to 100 MHz.

④ TTLFC/CCSOF. PID Computer Control + Data Acquisition + Data Management Software:
The three softwares are part of the SCADA system.
Compatible with actual Windows operating systems. Graphic and intuitive simulation of the process in screen. Compatible with the industry standards.
Flexible, open and multicontrol software, developed with actual windows graphic systems, acting simultaneously on all process parameters.
Analog and digital PID control.
PID menu and set point selection required in the whole work range.
Management, processing, comparison and storage of data.
Sampling velocity up to 250 KS/s (kilo samples per second).
Calibration system for the sensors involved in the process.
It allows the registration of the alarms state and the graphic representation in real time.
Comparative analysis of the obtained data, after the process and modification of the conditions during the process.
Open software, allowing the teacher to modify texts, instructions. Teacher’s and student’s passwords to facilitate the teacher’s control on the student, and allowing the access to different work levels.
This unit allows the 30 students of the classroom to visualize simultaneously all the results and the manipulation of the unit, during the process, by using a projector or an electronic whiteboard.

⑤ Cables and Accessories, for normal operation.
⑥ Manuals:
This unit is supplied with 8 manuals: Required Services, Assembly and Installation, Interface and Control Software, Starting-up, Safety, Maintenance, Calibration & Practices Manuals.
References 1 to 6 are the main items: TTLFC + TTLFC/CIB + DAB + TTLFC/CCSOF + Cables and Accessories + Manuals are included in the minimum supply for enabling normal and full operation.
1. Study of the behavior of particles in a bed when an ascending airflow is applied.
2. Study of the particles' segregation into size and density.
3. Study of the relation between bed's height, drop of pressure and ascending air's velocity through the particle bed.
4. Study of the variation of the heat's transference coefficient in a fluidized bed caused by the effect of the following parameters:
 - Superficial velocity.
 - Depth of the hot surface in the bed.
 - Particle’s granulometry.
5. Study of the distributor’s effect on the bed’s behavior.

Additional practical possibilities:
7. Many students view results simultaneously.
 - To view all results in real time in the classroom by means of a projector or an electronic whiteboard.
8. Open Control, Multicontrol and Real Time Control.
 - This unit allows intrinsically and/or extrinsically to change the span, gains; proportional, integral, derivative parameters; etc., in real time.
9. The Computer Control System with SCADA and PID Control allow a real industrial simulation.
10. This unit is totally safe as uses mechanical, electrical/electronic, and software safety devices.
11. This unit can be used for doing applied research.
12. This unit can be used for giving training courses to Industries even to other Technical Education Institutions.
13. Control of the TTLFC unit process through the control interface box without the computer.
14. Visualization of all the sensors values used in the TTLFC unit process.
 - By using PLC-PI additional 19 more exercises can be done.
 - Several other exercises can be done and designed by the user.

EXERCISES AND PRACTICAL POSSIBILITIES TO BE DONE WITH THE MAIN ITEMS

<table>
<thead>
<tr>
<th>REQUIRED SERVICES</th>
<th>DIMENSIONS AND WEIGHTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>TTLFC:</td>
<td>Control-Interface Box:</td>
</tr>
<tr>
<td>Offered in this catalog:</td>
<td>-Dimensions: 490 x 330 x 310 mm approx.</td>
</tr>
<tr>
<td>Offered in other catalog:</td>
<td>(19.29 x 12.99 x 12.20 inches approx.)</td>
</tr>
<tr>
<td>- Electrical supply: single-phase, 220 V/50 Hz or 110 V/60 Hz.</td>
<td>-Weight: 10 Kg approx.</td>
</tr>
<tr>
<td>- Compressed air supply.</td>
<td>(22 pounds approx.)</td>
</tr>
<tr>
<td>- Computer.</td>
<td>TTLFC:</td>
</tr>
<tr>
<td>Unit:</td>
<td>-Dimensions: 700 x 600 x 800 mm approx.</td>
</tr>
<tr>
<td>(27.55 x 23.62 x 31.49 inches approx.)</td>
<td>-Weight: 50 Kg approx.</td>
</tr>
<tr>
<td>(110 pounds approx.)</td>
<td></td>
</tr>
</tbody>
</table>

AVAILABLE VERSIONS

- TTLFC. Computer Controlled Fluidization and Fluid Bed Heat Transfer Unit.
- TTLFB. Fluidization and Fluid Bed Heat Transfer Unit.
The teacher and the students can calibrate the unit with a password provided by EDIBON. The teacher can restore the factory calibration any time.

Main software operation possibilities.
- Sensors displays, real time values, and extra output parameters. Sensors: ST=Temperature sensor, SP=Pressure sensor, SPD=Differential pressure sensor, SC=Flow sensor, SW=Wattmeter.
- Channel selection and other plot parameters.
- Real time graphics displays.

Software for Sensors Calibration

Example of screens
SOME REAL RESULTS OBTAINED FROM THIS UNIT

Representation in real time of the measured magnitudes. Fluidization at different bed heights with one type of diffuser.

Representation in real time of the measured magnitudes. Fluidization with different particle size.

Representation in real time of the measured magnitudes. Fluidization with different diffusers.
Some real results obtained from this Unit

The heating temperature control is done through a PID control. When the target temperature is reached at the temperature sensor (ST.1), the heating element is turned off.
Some real results obtained from this Unit

Signal versus signal chart where any of the measured variables can be represented. Profile of air outlet temperatures versus flow.

Visualization and representation of saved data.
Additionally to the main items (1 to 6) described, we can offer, as optional, other items from 7 to 11.
All these items try to give more possibilities for:

a) Industrial configuration. (PLC)
b) Technical and Vocational Education configuration. (ICAI and FSS)
c) Multipost Expansions options. (MINI ESN and ESN)

a) Industrial configuration

7 PLC. Industrial Control using PLC (It includes PLC-PI Module plus PLC-SOF Control Software):

-PLC-PI. PLC Module:

Metallic box.

Circuit diagram in the module front panel.

Front panel:

- **Digital inputs (X) and Digital outputs (Y) block:**
 - 16 Digital inputs, activated by switches and 16 LEDs for confirmation (red).
 - 14 Digital outputs (through SCSI connector) with 14 LEDs for message (green).

- **Analogue inputs block:**
 - 16 Analogue inputs (-10 V to +10 V) (through SCSI connector).

- **Analogue outputs block:**
 - 4 Analogue outputs (-10 V to +10 V) (through SCSI connector).

- **Touch screen:**

- **Back panel:**
 - Power supply connector. Fuse 2A. RS-232 connector to PC. USB 2.0 connector to PC.
 - Inside:
 - Power supply outputs: 24 Vdc, 12 Vdc, 12 Vdc variable.

- **Panasonic PLC:**
 - High-speed scan of 0.32 µsec. for a basic instruction.
 - Program capacity of 32 Ksteps, with a sufficient comment area.
 - Power supply input (100 to 240 V AC).
 - DC input: 16 (24 V DC).
 - Relay output: 14.
 - High-speed counter.
 - Multi-point PID control.

- **Digital inputs/outputs and analogue inputs/outputs Panasonic modules.**

Communication RS232 wire to computer (PC).

Dimensions: 490 x 330 x 310 mm. approx. (19.29 x 12.99 x 12.20 inches approx.). Weight: 30 Kg. approx. (66 pounds approx.).

-TTLFC/PLC-SOF. PLC Control Software:

For this particular unit, always included with PLC supply.

The software has been designed using Labview and it follows the unit operation procedure and linked with the Control Interface Box used in the Computer Controlled Fluidization and Fluid Bed Heat Transfer Unit (TTLFC).

Practices to be done with PLC-PI:

1.- Control of the particular unit process through the control interface box without the computer.
2.- Visualization of all the sensors values used in the particular unit process.
3.- Calibration of all sensors included in the particular unit process.
4.- Realization of different experiments, in automatic way, without having in front the particular unit. (These experiments can be decided previously).
5.- Simulation of outside actions, in the cases do not exist hardware elements. (Example: Test of complementary tanks, complementary industrial environment to the process to be studied, etc).
6.- PLC hardware general use.
7.- PLC process application for the particular unit.
8.- PLC structure.
9.- PLC inputs and outputs configuration.
10.- PLC configuration possibilities.
11.- PLC program languages.
12.- PLC different programming standard languages (ladder diagram (LD), structured text (ST), instructions list (IL), sequential function chart (SFC), function block diagram (FBD)).
13.- New configuration and development of new process.
14.- Hand on an established process.
15.- To visualize and see the results and to make comparisons with the particular unit process.
16.- Possibility of creating new process in relation with the particular unit.
17.- PLC Programming Exercises.
18.- Own PLC applications in accordance with teacher and student requirements.

b) Technical and Vocational Education configuration

TTLFC/ICAI. Interactive Computer Aided Instruction Software System.
This complete software package consists of an Instructor Software (EDIBON Classroom Manager - ECM-SOF) totally integrated with the Student Software (EDIBON Student Labsoft - ESL-SOF). Both are interconnected so that the teacher knows at any moment what is the theoretical and practical knowledge of the students.

This software is optional and can be used additionally to items (1 to 6).

- ECM-SOF. EDIBON Classroom Manager (Instructor Software).
ECM-SOF is the application that allows the Instructor to register students, manage and assign tasks for workgroups, create own content to carry out Practical Exercises, choose one of the evaluation methods to check the Student knowledge and monitor the progression related to the planned tasks for individual students, workgroups, units, etc... so the teacher can know in real time the level of understanding of any student in the classroom.

Innovative features:
- User Data Base Management.
- Administration and assignment of Workgroup, Task and Training sessions.
- Creation and Integration of Practical Exercises and Multimedia Resources.
- Custom Design of Evaluation Methods.
- Creation and assignment of Formulas & Equations.
- Equation System Solver Engine.
- Updatable Contents.
- Report generation, User Progression Monitoring and Statistics.

- ESL-SOF. EDIBON Student Labsoft (Student Software).
ESL-SOF is the application addressed to the Students that helps them to understand theoretical concepts by means of practical exercises and to prove their knowledge and progression by performing tests and calculations in addition to Multimedia Resources. Default planned tasks and an Open workgroup are provided by EDIBON to allow the students start working from the first session. Reports and statistics are available to know their progression at any time, as well as explanations for every exercise to reinforce the theoretically acquired technical knowledge.

Innovative features:
- Student Log-In & Self-Registration.
- Existing Tasks checking & Monitoring.
- Default contents & scheduled tasks available to be used from the first session.
- Practical Exercises accomplishment by following the Manual provided by EDIBON.
- Evaluation Methods to prove your knowledge and progression.
- Test self-correction.
- Calculations computing and plotting.
- Equation System Solver Engine.
- User Monitoring Learning & Printable Reports.
- Multimedia-Supported auxiliary resources.

For more information see ICAI catalogue. Click on the following link: www.edibon.com/en/files/expansion/ICAI/catalog
MINI ESN. EDIBON Mini Scada-Net System for being used with EDIBON Teaching Units.

MINI ESN. EDIBON Mini Scada-Net System allows up to 30 students to work with a Teaching Unit in any laboratory, simultaneously. It is useful for both, Higher Education and/or Technical and Vocational Education.

The MINI ESN system consists of the adaptation of any EDIBON Computer Controlled Unit with SCADA and PID Control integrated in a local network. This system allows to view/control the unit remotely, from any computer integrated in the local net (in the classroom), through the main computer connected to the unit. Then, the number of possible users who can work with the same unit is higher than in an usual way of working (usually only one).

Main characteristics:
- It allows up to 30 students to work simultaneously with the EDIBON Computer Controlled Unit with SCADA and PID Control, connected in a local net.
- Open Control + Multicontrol + Real Time Control + Multi Student Post.
- Instructor controls and explains to all students at the same time.
- Any user/student can work doing “real time” control/multicontrol and visualisation.
- Instructor can see in the computer what any user/student is doing in the unit.
- Continuous communication between the instructor and all the users/students connected.

Main advantages:
- It allows an easier and quicker understanding.
- This system allows you can save time and cost.
- Future expansions with more EDIBON Units.

For more information see MINI ESN catalogue. Click on the following link:
ORDER INFORMATION

<table>
<thead>
<tr>
<th>Main items (always included in the supply)</th>
<th>Optional items (supplied under specific order)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum supply always includes:</td>
<td></td>
</tr>
<tr>
<td>① Unit: TTLFC. Computer Controlled Fluidization and Fluid Bed Heat Transfer Unit.</td>
<td>⑦ PLC. Industrial Control using PLC (it includes PLC-PI Module plus PLC-SOF Control Software):</td>
</tr>
<tr>
<td>② TTLFC/CIB. Control Interface Box.</td>
<td>⑧ - PCL-PI. PLC Module.</td>
</tr>
<tr>
<td>③ DAB. Data Acquisition Board.</td>
<td>⑨ - TTLFC/PLC-SOF. PLC Control Software.</td>
</tr>
<tr>
<td>④ TTLFC/CCSOF. PID Computer Control + Data Acquisition + Data Management Software.</td>
<td></td>
</tr>
<tr>
<td>⑤ Cables and Accessories, for normal operation.</td>
<td>⑩ TTLFC/ICAI. Interactive Computer Aided Instruction Software System.</td>
</tr>
<tr>
<td>⑥ Manuals.</td>
<td>⑪ TTLFC/FSS. Faults Simulation System.</td>
</tr>
<tr>
<td>IMPORTANT: Under TTLFC we always supply all the elements for immediate running as 1, 2, 3, 4, 5 and 6.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>⑫ MINI ESN. EDIBON Mini Scada-Net System for being used with EDIBON Teaching Units.</td>
</tr>
<tr>
<td></td>
<td>⑬ ESN. EDIBON Scada-Net Systems.</td>
</tr>
</tbody>
</table>
TENDER SPECIFICATIONS (for main items)

1. **TTLFC. Unit:**
 - Bench-top unit.
 - Anodized aluminum frame and panels made of painted steel.
 - Main metallic elements made of stainless steel.
 - Diagram in the front panel with distribution of the elements similar to the real one.
 - Pressure regulator and filter. It is supplied fixed to 3 Bar.
 - Regulation valve to regulate the flow of air at the inlet of the bed chamber.
 - Bed chamber:
 - Cylinder made of glass where the granular material that forms the bed is contained.
 - Back light to facilitate the visualization of the fluidized bed.
 - It includes:
 - Computer controlled heating element:
 - Cylindrical heating element with copper coating: Transfer area: 20.4 cm².
 - Maximum power: 150 W.
 - Potentiometer that regulates the current to the heating element.
 - Heating power measurement with a wattmeter.
 - "J" type temperature sensor on the surface of the heating element.
 - Control temperature sensor that prevents the temperature from exceeding 150°C.
 - Filter at the top of the chamber.
 - Distributor of the bottom of the bed chamber. Nine different distributors are included with different number of orifices, different sizes of orifices and different distribution of orifices.
 - Graduated scale to measure the height of the bed.
 - Two "J" type temperature sensors to measure:
 - Bed temperature.
 - Air temperature at the outlet of the chamber.
 - Granular material:
 - Kg: (170 – 200 microns).
 - Kg: (250 – 420 microns).
 - Safety tank made of PMMA to prevent overpressures in the chamber.
 - Air flow sensor at the inlet of the chamber formed by one orifice plate and two pressure sensors. Flow range: 0 – 200 l/min.
 - "J" type temperature sensor to measure the air temperature at the inlet of the chamber.
 - Pressure sensor to measure the air pressure at the inlet of the chamber. Range: 0 – 100 PSI.
 - Differential pressure sensor to measure the pressure drop in the bed. Range: 0 – 1 PSI.
 - The complete unit includes as well:
 - Advanced Real-Time SCADA and PID Control.
 - Open Control + Multicontrol + Real-Time Control.
 - Specialized EDIBON Control Software based on LabVIEW.
 - National Instruments Data Acquisition board (250 KS/s, kilo samples per second).
 - Calibration exercises, which are included, teach the user how to calibrate a sensor and the importance of checking the accuracy of the sensors before taking measurements.
 - Projector and/or electronic whiteboard compatibility allows the unit to be explained and demonstrated to an entire class at one time.
 - Capable of doing applied research, real simulation, training courses, etc.
 - Remote operation and control by the user and remote control for EDIBON technical support, are always included.
 - Totally safe, utilizing 4 safety systems (Mechanical, Electrical, Electronic & Software).
 - Designed and manufactured under several quality standards.
 - Optional ICAI software to create, edit and carry out practical exercises, tests, exams, calculations, etc. Apart from monitoring user’s knowledge and progress reached.
 - This unit has been designed for future expansion and integration. A common expansion is the EDIBON Scada-Net (ESN) System which enables multiple students to simultaneously operate many units in a network.

2. **TTLFC/CIB. Control Interface Box:**
 - The Control Interface Box is part of the SCADA system.
 - Control interface box with process diagram in the front panel.
 - The unit control elements are permanently computer controlled.
 - Simultaneous visualization in the computer of all parameters involved in the process.
 - Calibration of all sensors involved in the process.
 - Real time curves representation about system responses.
 - All the actuators’ values can be changed at any time from the keyboard allowing the analysis about curves and responses of the whole process.
 - Shield and filtered signals to avoid external interferences.
 - Real time PID control with flexibility of modifications from the computer keyboard of the PID parameters, at any moment during the process.
 - Real time PID control for parameters involved in the process simultaneously.
 - Proportional control, integral control and derivative control, based on the real PID mathematical formula, by changing the values, at any time, of the three control constants (proportional, integral and derivative constants).
 - Open control allowing modifications, at any moment and in real time, of parameters involved in the process simultaneously.
 - Three safety levels, one mechanical in the unit, another electronic in the control interface and the third one in the control software.

3. **DAB. Data Acquisition Board:**
 - The Data Acquisition board is part of the SCADA system.
 - PCI Express Data acquisition board (National Instruments) to be placed in a computer slot.
 - Analog input: Channels= 16 single-ended or 8 differential. Resolution=16 bits, 1 in 65536. Sampling rate up to: 250 KS/s (kilo samples per second).
 - Analog output: Channels=2. Resolution=16 bits, 1 in 65536.
 - Digital Input/Output: Channels=24 inputs/outputs.

4. **TTLFC/CCSF. PID Computer Control + Data Acquisition + Data Management Software:**
 - The three softwares are part of the SCADA system.
 - Compatible with the industry standards.
 - Flexible, open and multicontrol software, developed with actual windows graphic systems, acting simultaneously on all process parameters.
 - Analog and digital PID control. PID menu and set point selection required in the whole work range.
 - Management, processing, comparison and storage of data.
 - Sampling velocity up to 250 KS/s (kilo samples per second).
 - Calibration system for the sensors involved in the process.
 - It allows the registration of the alarms state and the graphic representation in real time.
 - Open software, allowing the teacher to modify texts, instructions. Teacher’s and student’s passwords to facilitate the teacher’s control on the student, and allowing the access to different work levels.
 - This unit allows the 30 students of the classroom to visualize simultaneously all the results and the manipulation of the unit, during the process, by using a projector or an electronic whiteboard.

5. **Accessories:**
 - This unit is supplied with 8 manuals: Required Services, Assembly and Installation, Interface and Control Software, Starting-up, Safety, Maintenance, Calibration & Practices Manuals.
Exercises and Practical Possibilities to be done with the Main Items

1.- Study of the behavior of particles in a bed when an ascending airflow is applied.

2.- Study of the particles' segregation into size and density.

3.- Study of the relation between bed's height, drop of pressure and ascending air's velocity through the particle bed.

4.- Study of the variation of the heat's transference coefficient in a fluidized bed caused by the effect of the following parameters:
 - Superficial velocity.
 - Depth of the hot surface in the bed.
 - Particle’s granulometry.

5.- Study of the distributor’s effect on the bed’s behavior.

Additional practical possibilities:

6.- Sensors calibration.

Other possibilities to be done with this Unit:

7.- Many students view results simultaneously.
 - To view all results in real time in the classroom by means of a projector or an electronic whiteboard.

8.- Open Control, Multicontrol and Real Time Control.
 - This unit allows intrinsically and/or extrinsically to change the span, gains; proportional, integral, derivative parameters; etc, in real time.

9.- The Computer Control System with SCADA and PID Control allow a real industrial simulation.

10.- This unit is totally safe as uses mechanical, electrical/electronic, and software safety devices.

11.- This unit can be used for doing applied research.

12.- This unit can be used for giving training courses to Industries even to other Technical Education Institutions.

13.- Control of the TTLFC unit process through the control interface box without the computer.

14.- Visualization of all the sensors values used in the TTLFC unit process.
 - By using PLC-PI additional 19 more exercises can be done.
 - Several other exercises can be done and designed by the user.
TENDER SPECIFICATIONS (for optional items)

a) Industrial configuration

PLC. Industrial Control using PLC

- **PLC-PI. PLC Module:**
 - Metallic box.
 - Circuit diagram in the module front panel.
 - Digital inputs (X) and Digital outputs (Y) block: 16 Digital inputs. 14 Digital outputs.
 - Analog inputs block: 16 Analog inputs.
 - Analog outputs block: 4 Analog outputs.
 - Touch screen.

Panasonic PLC:
 - High-speed scan of 0.32 µsec. Program capacity of 32 Ksteps. High-speed counter. Multi-point PID control.
 - Digital inputs/outputs and analog inputs/outputs Panasonic modules.

-TTLFC/PLC-SOF. PLC Control Software:

For this particular unit, always included with PLC supply.

Practices to be done with PLC-PI:

1.- Control of the particular unit process through the control interface box without the computer.
2.- Visualization of all the sensors values used in the particular unit process.
3.- Calibration of all sensors included in the particular unit process.
4.- Hand on of all the actuators involved in the particular unit process.
5.- Realization of different experiments, in automatic way, without having in front the particular unit. (These experiments can be decided previously).
6.- Simulation of outside actions, in the cases do not exist hardware elements. (Example: test of complementary tanks, complementary industrial environment to the process to be studied, etc).
7.- PLC hardware general use.
8.- PLC process application for the particular unit.
9.- PLC structure.
10.- PLC inputs and outputs configuration.
11.- PLC configuration possibilities.
12.- PLC program languages.
13.- PLC different programming standard languages (ladder diagram (LD), structured text (ST), instructions list (IL), sequential function chart (SFC), function block diagram (FBD)).
14.- New configuration and development of new process.
15.- Hand on an established process.
16.- To visualize and see the results and to make comparisons with the particular unit process.
17.- Possibility of creating new process in relation with the particular unit.
18.- PLC Programming Exercises.
19.- Own PLC applications in accordance with teacher and student requirements.

b) Technical and Vocational Education configuration

TTLFC/ICAI. Interactive Computer Aided Instruction Software System.

This complete software package consists of an Instructor Software (EDIBON Classroom Manager - ECM-SOF) totally integrated with the Student Software (EDIBON Student Labsoft - ESL-SOF). Both are interconnected so that the teacher knows at any moment what is the theoretical and practical knowledge of the students.

- ECM-SOF. EDIBON Classroom Manager (Instructor Software).

 - ECM-SOF is the application that allows the Instructor to register students, manage and assign tasks for workgroups, create own content to carry out Practical Exercises, choose one of the evaluation methods to check the Student knowledge and monitor the progression related to the planned tasks for individual students, workgroups, units, etc... so the teacher can know in real time the level of understanding of any student in the classroom.

 Innovative features:
 - User Data Base Management.
 - Administration and assignment of Workgroup, Task and Training sessions.
 - Creation and Integration of Practical Exercises and Multimedia Resources.
 - Custom Design of Evaluation Methods.
 - Creation and assignment of Formulas & Equations.
 - Equation System Solver Engine.
 - Updatable Contents.
 - Report generation, User Progression Monitoring and Statistics.

- ESL-SOF. EDIBON Student Labsoft (Student Software).

 - ESL-SOF is the application addressed to the Students that helps them to understand theoretical concepts by means of practical exercises and to prove their knowledge and progression by performing tests and calculations in addition to Multimedia Resources. Default planned tasks and an Open workgroup are provided by EDIBON to allow the students start working from the first session. Reports and statistics are available to know their progression at any time, as well as explanations for every exercise to reinforce the theoretically acquired technical knowledge.

 Innovative features:
 - Student Log-In & Self-Registration.
 - Existing Tasks checking & Monitoring.
 - Default contents & scheduled tasks available to be used from the first session.
 - Practical Exercises accomplishment by following the Manual provided by EDIBON.
 - Evaluation Methods to prove your knowledge and progression.
 - Test self-correction.
 - Calculations computing and plotting.
 - Equation System Solver Engine.
 - User Monitoring Learning & Printable Reports.
 - Multimedia-Supported auxiliary resources.
c) Multipost Expansions options

MINI ESN. EDIBON Mini Scada-Net System for being used with EDIBON Teaching Units.

MINI ESN. EDIBON Mini Scada-Net System allows up to 30 students to work with a Teaching Unit in any laboratory, simultaneously. The MINI ESN system consists of the adaptation of any EDIBON Computer Controlled Unit with SCADA and PID Control integrated in a local network. This system allows to view/control the unit remotely, from any computer integrated in the local net (in the classroom), through the main computer connected to the unit.

Main characteristics:
- It allows up to 30 students to work simultaneously with the EDIBON Computer Controlled Unit with SCADA and PID Control, connected in a local net.
- Open Control + Multicontrol + Real Time Control + Multi Student Post.
- Instructor controls and explains to all students at the same time.
- Any user/student can work doing "real time" control/multicontrol and visualisation.
- Instructor can see in the computer what any user/student is doing in the unit.
- Continuous communication between the instructor and all the users/students connected.

Main advantages:
- It allows an easier and quicker understanding.
- This system allows you can save time and cost.
- Future expansions with more EDIBON Units.

The system basically will consist of:
- Instructor’s computer.
- Students’ computers.
- Local Network.
- Unit-Control Interface adaptation.
- Unit Software adaptation.
- Webcam.
- MINI ESN Software to control the whole system.
- Cables and accessories required for a normal operation.

Specifications subject to change without previous notice, due to the convenience of improvement of the product.