Computer Controlled Absorption Refrigeration Unit, with SCADA

EDIBON SCADA System

- Control Interface Box
- Data Acquisition Board
- Software for:
 - Computer Control
 - Data Acquisition
 - Data Management
- Cables and Accessories
- Manuals

* Minimum supply always includes: 1 + 2 + 3 + 4 + 5 + 6
 (Computer not included in the supply)

Key features:

- Advanced Real-Time SCADA.
- Open Control + Multicontrol + Real-Time Control.
- Specialized EDIBON Control Software based on LabVIEW.
- National Instruments Data Acquisition board (250 KS/s, kilo samples per second).
- Calibration exercises, which are included, teach the user how to calibrate a sensor and the importance of checking the accuracy of the sensors before taking measurements.
- Projector and/or electronic whiteboard compatibility allows the unit to be explained and demonstrated to an entire class at one time.
- Capable of doing applied research, real industrial simulation, training courses, etc.
- Remote operation and control by the user and remote control for EDIBON technical support, are always included.
- Totally safe, utilizing 4 safety systems (Mechanical, Electrical, Electronic & Software).
- Designed and manufactured under several quality standards.
- Optional ICAI software to create, edit and carry out practical exercises, tests, exams, calculations, etc. Apart from monitoring user’s knowledge and progress reached.
- This unit has been designed for future expansion and integration. A common expansion is the EDIBON Scada-Net (ESN) System which enables multiple students to simultaneously operate many units in a network.

For more information about Key Features, click here
The absorption refrigeration system is a means to generate cold that makes use of the fact that substances absorb heat when changing from liquid to gas state. These systems are based on the principle that certain substances, known as absorbents, are good absorbing vapors from other substances, known as refrigerants, thus generating enough pressure decrease for the refrigerant evaporation and consequent refrigeration.

The Computer Controlled Absorption Refrigeration Unit, “TRAC”, designed by EDIBON, is a unit that enables the students to learn about devices that use absorption cycles to refrigerate.

The importance of these devices in large installations is increasing, since they generate cold from the residual heat of some manufacturing processes. Nowadays, more and more cogeneration thermal plants (electric energy + heat) use their residual heat as a thermal source to operate absorption machines, introducing the concept of trigeneration (electricity, heat and cold generation).

As a result, by using the “TRAC” unit, students will familiarize with each of the individual components of an absorption refrigeration unit (freezing and cooling) and will have the possibility of selecting the heat source between an electrical resistance or LPG.

GENERAL DESCRIPTION

The Computer Controlled Absorption Refrigeration Unit, “TRAC”, developed by EDIBON, is a complete laboratory unit for the demonstration of absorption refrigeration.

This unit is provided with a dual power source (heat source) of LPG and electricity. A pressure regulator to adapt the gas to the corresponding inlet pressure (30 - 50 mbar) is supplied for the operation with LPG.

The fluid used in the refrigeration cycle of the “TRAC” unit is a solution of water and ammonia (NH₃), being ammonia the refrigerant and water the absorber. An important advantage is that these agents are totally innocuous for the environment. The cycle uses the great affinity of ammonia with the water, being the ammonia used as refrigerant since it is easily absorbed by water.

The water and ammonia solution is heated at a high pressure in the generator or heater. Two substances are separated then by boiling: on one hand, vapour with a high concentration of ammonia, called concentrated solution, and on the other hand, a liquid solution with a low concentration of ammonia, called diluted or poor solution.

Vapour passes through a condenser (finned exchanger) where it is cooled until it condenses and passes to liquid state, reducing its temperature.

This ammonia concentrated solution enters a heat exchanger, where it is further cooled and its pressure is reduced to enter the evaporator. Due to this pressure difference, it is evaporated at a low temperature.

The unit includes a tank for the absorber, where the solution rich in ammonia in liquid state formed by the absorber and the ammonia vapour from the evaporator stay together.

The absorber makes it possible to obtain a low pressure in the evaporator, so that the refrigerant (ammonia) boils at a lower temperature, taking the required heat from the water, reducing its temperature.

The liquid solution rich in ammonia coming from the absorber is heated in the generator to separate the pure ammonia vapours and the water (absorber). Ammonia vapours go to the condenser and the poor solution goes to the absorber, where the absorption of the ammonia in vapour state is generated again.

This Computer Controlled Unit is supplied with the EDIBON Computer Control System (SCADA), and includes: The unit itself + a Control Interface Box + a Data Acquisition Board + Computer Control, Data Acquisition and Data Management Software Packages, for controlling the process and all parameters involved in the process.
With this unit there are several options and possibilities:
- Main items: 1, 2, 3, 4, 5 and 6.
- Optional items: 7, 8, 9, 10 and 11.

Let us describe first the main items (1 to 6):

➊ TRAC. Unit:
Bench-top unit.
- Anodized aluminum structure and panels of painted steel.
- Main metallic elements in stainless steel.
- Diagram in the front panel with similar distribution to the elements in the real unit.
- Condenser: finned exchanger.
- Evaporator.
- Absorber.
- Absorption tank.
- Cooling compartment or tank with temperature sensor.
- Refrigerant compartment or tank with temperature sensor.
- Solenoid valve.
- Generator or heater, possibility to select the heat source between an heating element or LPG:
 - To work with LPG:
 - Burner and piezoelectric igniter: to ignite the flame of fuel.
 - Pressure regulator with manometer (range 0 - 3 bar) to regulate the LPG inlet pressure to the generator.
 - To work with an electrical heating element:
 - Electrical heater: 230 V, 125 W.
 - Control of power from the computer (SCADA software).

Instrumentation:
- Ten temperature sensors distributed at key points of the unit.
- Sensors for the power, current and voltage consumed by the electrical heating element.

The unit includes all the safety measures required for a safe operation:
- The unit is perfectly watertight to avoid ammonia leakages.
- Safety pushbutton.

The complete unit includes as well:
- Advanced Real-Time SCADA.
- Open Control + Multicontrol + Real-Time Control.
- Specialized EDIBON Control Software based on LabVIEW.
- National Instruments Data Acquisition board (250 KS/s, kilo samples per second).
- Calibration exercises, which are included, teach the user how to calibrate a sensor and the importance of checking the accuracy of the sensors before taking measurements.
- Projector and/or electronic whiteboard compatibility allows the unit to be explained and demonstrated to an entire class at one time.
- Capable of doing applied research, real industrial simulation, training courses, etc.
- Remote operation and control by the user and remote control for EDIBON technical support, are always included.
- Totally safe, utilizing 4 safety systems (Mechanical, Electrical, Electronic & Software).
- Designed and manufactured under several quality standards.
- Optional ICAl software to create, edit and carry out practical exercises, tests, exams, calculations, etc.

Apart from monitoring user’s knowledge and progress reached.
This unit has been designed for future expansion and integration. A common expansion is the EDIBON Scada-Net (ESN) System which enables multiple students to simultaneously operate many units in a network.
DAB. Data Acquisition Board:
The Data Acquisition board is part of the SCADA system. PCI Express Data acquisition board (National Instruments) to be placed in a computer slot. Bus PCI Express.

Analog input:
- Number of channels: 16 single-ended or 8 differential. Resolution: 16 bits, 1 in 65536.
- Sampling rate up to: 250 KS/s (kilo samples per second).
- Input range (V) = ±10 V. Data transfers = DMA, interrupts, programmed I/O. DMA channels = 6.

Analog output:
- Number of channels: 2. Resolution: 16 bits, 1 in 65536.
- Maximum output rate up to: 900 KS/s.
- Output range (V) = ±10 V. Data transfers = DMA, interrupts, programmed I/O.

Digital Input/Output:
- Number of channels: 24 inputs/outputs. D0 or DI Sample Clock frequency: 0 to 100 MHz.

TRAC/CCSOF. Computer Control + Data Acquisition + Data Management Software:
The three softwares are part of the SCADA system. Compatible with actual Windows operating systems. Graphic and intuitive simulation of the process in screen. Compatible with the industry standards.

Flexible, open and multicontrol software, developed with actual windows graphic systems, acting simultaneously on all process parameters.

Management, processing, comparison and storage of data.
Sampling velocity up to: 250 KS/s (kilo samples per second).
Calibration system for the sensors involved in the process.
It allows the registration of the alarms state and the graphic representation in real time.
Comparative analysis of the obtained data, after the process and modification of the conditions during the process.
Open software, allowing the teacher to modify texts, instructions. Teacher’s and student’s passwords to facilitate the teacher’s control on the student, and allowing the access to different work levels.
This unit allows the 30 students of the classroom to visualize simultaneously all the results and the manipulation of the unit, during the process, by using a projector or an electronic whiteboard.

Cables and Accessories, for normal operation.

Manuals:
This unit is supplied with 8 manuals: Required Services, Assembly and Installation, Interface and Control Software, Starting-up, Safety, Maintenance, Calibration & Practices Manuals.

References 1 to 6 are the main items: TRAC + TRAC/CIB + DAB + TRAC/CCSOF + Cables and Accessories + Manuals are included in the minimum supply for enabling normal and full operation.
Exercises and Practical Possibilities to be Done with the Main Items

1. Demonstration of the refrigeration process.
2. Demonstration of the vapour absorption refrigeration cycle and visualization of the most important processes.
3. Familiarisation with the individual components of the absorption refrigeration unit.
4. Operation of the gas absorption refrigeration unit using either an electric element or LPG as the heat source.
5. Comparison of the refrigeration temperature obtained using LPG or an electrical element as heat source.
6. Measurement of the electrical power.
7. Influence of the electrical power in the refrigeration temperature obtained.
8. Measurement of the temperature in the main points of the absorption refrigeration process.

Additional practical possibilities:

10. Many students view results simultaneously.

To view all results in real time in the classroom by means of a projector or an electronic whiteboard.

Required Services

- Electrical supply: single-phase, 220 V/50 Hz. or 110 V/60 Hz.
- Computer.
- The unit must be operated in a ventilated space with fume extraction system.

Required Consumables (Not Included)

- LPG gas. Fuel consumption = 18 g/h at 30 - 50 mbar (the unit is supplied with a pressure regulator).

Dimensions and Weights

TRAC:
Unit:
- Dimensions: 700 x 700 x 700 mm. approx.
 (27.55 x 27.55 x 27.55 inches approx.)
- Weight: 70 Kg. approx.
 (154.32 pounds approx.)

Control-Interface Box:
- Dimensions: 490 x 330 x 310 mm. approx.
 (19.29 x 12.99 x 12.2 inches approx.)
- Weight: 10 Kg. approx.
 (22 pounds approx.)
SOFTWARE MAIN SCREENS

SCADA
Main screen

The teacher and the students can calibrate the unit with a password provided by EDIBON.
The teacher can restore the factory calibration any time.

Main software operation possibilities.
Sensors displays, real time values, and extra output parameters. Sensors: ST=Temperature sensor. SW=Power sensor. V_AC=Voltage measurement. I_AC=Current measurement.
Channel selection and other plot parameters.
Real time graphics displays.

Software for Sensors Calibration
Example of screens

The teacher and the students can calibrate the unit with a password provided by EDIBON.
The teacher can restore the factory calibration any time.
SOME REAL RESULTS OBTAINED FROM THIS UNIT

Representation in real time of the measured magnitudes. Graph with temperature measures visualization.

Representation in real time of the measured magnitudes. Graph with temperature measures visualization. Operates with heating element.

Graph with temperature measures visualization. Units of time selection to represent the measured magnitudes evolution.

Representation in real time of the measured magnitudes. Graph with temperature measures visualization. Operates with LPG.
Additionally to the main items (1 to 6) described, we can offer, as optional, other items from 7 to 11.

All these items try to give more possibilities for:

a) Industrial configuration. (PLC)

b) Technical and Vocational Education configuration. (ICAI and FSS)

c) Multipost Expansions options. (Mini ESN and ESN)

g) Industrial configuration

PLC. Industrial Control using PLC (It includes PLC-PI Module plus PLC-SOF Control Software):

- PLC-PI. PLC Module:

 Metallic box.

 Circuit diagram in the module front panel.

 Front panel:

 Digital inputs (X) and Digital outputs (Y) block:

 16 Digital inputs, activated by switches and 16 LEDs for confirmation (red).

 14 Digital outputs (through SCSI connector) with 14 LEDs for message (green).

 Analog inputs block:

 16 Analog inputs (-10 V. to +10 V.) (through SCSI connector).

 Analog outputs block:

 4 Analog outputs (-10 V. to +10 V.) (through SCSI connector).

 Touch screen:

 Multi language function. True type fonts.

 Back panel:

 Power supply connector. Fuse 2A. RS-232 connector to PC. USB 2.0 connector to PC.

 Inside:

 Power supply outputs: 24 Vdc, 12 Vdc, -12 Vdc, 12 Vdc variable.

 Panasonic PLC:

 High-speed scan of 0.32 µsec. for a basic instruction.

 Program capacity of 32 Ksteps, with a sufficient comment area.

 Power supply input (100 to 240 V AC).

 DC input: 16 (24 V DC).

 Relay output: 14.

 High-speed counter.

 Multi-point PID control.

 Dimensions: 490 x 330 x 310 mm. approx. (19.29 x 12.99 x 12.20 inches approx.). Weight: 30 Kg. approx. (66 pounds approx.).

- TRAC/PLC-SOF. PLC Control Software:

 For this particular unit, always included with PLC supply.

 The software has been designed using Labview and it follows the unit operation procedure and linked with the Control Interface Box used in the Computer Controlled Absorption Refrigeration Unit (TRAC).

Practices to be done with PLC-PI:

1.- Control of the particular unit process through the control interface box without the computer.

2.- Visualization of all the sensors values used in the particular unit process.

3.- Calibration of all sensors included in the particular unit process.

4.- Hand on of all the actuators involved in the particular unit process.

5.- Realization of different experiments, in automatic way, without having in front the particular unit. (These experiments can be decided previously).

6.- Simulation of outside actions, in the cases do not exist hardware elements. (Example: test of complementary tanks, complementary industrial environment to the process to be studied, etc.).

7.- PLC hardware general use.

8.- PLC process application for the particular unit.

9.- PLC structure.

10.- PLC inputs and outputs configuration.

11.- PLC configuration possibilities.

12.- PLC program languages.

13.- PLC different programming standard languages [ladder diagram (LD), structured text (ST), instructions list (IL), sequential function chart (SFC), function block diagram (FBD)].

14.- New configuration and development of new process.

15.- Hand on an established process.

16.- To visualize and see the results and to make comparisons with the particular unit process.

17.- Possibility of creating new process in relation with the particular unit.

18.- PLC Programming Exercises.

19.- Own PLC applications in accordance with teacher and student requirements.
Complete Technical Specifications (for optional items)

b) Technical and Vocational Education configuration

(3) TRAC/ICAI. Interactive Computer Aided Instruction Software System.

This complete software package consists of an Instructor Software (EDIBON Classroom Manager -ECM-SOF) totally integrated with the Student Software (EDIBON Student Labsoft -ESL-SOF). Both are interconnected so that the teacher knows at any moment what is the theoretical and practical knowledge of the students.

This software is optional and can be used additionally to items (1 to 6).

-ECM-SOF. EDIBON Classroom Manager (Instructor Software).

ECM-SOF is the application that allows the Instructor to register students, manage and assign tasks for workgroups, create own content to carry out Practical Exercises, choose one of the evaluation methods to check the Student knowledge and monitor the progression related to the planned tasks for individual students, workgroups, units, etc... so the teacher can know in real time the level of understanding of any student in the classroom.

Innovative features:

- User Data Base Management.
- Administration and assignment of Workgroup, Task and Training sessions.
- Creation and Integration of Practical Exercises and Multimedia Resources.
- Custom Design of Evaluation Methods.
- Creation and assignment of Formulas & Equations.
- Equation System Solver Engine.
- Updatable Contents.
- Report generation, User Progression Monitoring and Statistics.

-ESL-SOF. EDIBON Student Labsoft (Student Software).

ESL-SOF is the application addressed to the Students that helps them to understand theoretical concepts by means of practical exercises and to prove their knowledge and progression by performing tests and calculations in addition to Multimedia Resources. Default planned tasks and an Open workgroup are provided by EDIBON to allow the students start working from the first session. Reports and statistics are available to know their progression at any time, as well as explanations for every exercise to reinforce the theoretically acquired technical knowledge.

Innovative features:

- Student Log-In & Self-Registration.
- Existing Tasks checking & Monitoring.
- Default contents & scheduled tasks available to be used from the first session.
- Practical Exercises accomplishment by following the Manual provided by EDIBON.
- Evaluation Methods to prove your knowledge and progression.
- Test self-correction.
- Calculations computing and plotting.
- Equation System Solver Engine.
- User Monitoring Learning & Printable Reports.
- Multimedia-Supported auxiliary resources.

For more information see ICAI catalogue. Click on the following link:
Mini ESN. EDIBON Mini Scada-Net System

Mini ESN. EDIBON Mini Scada-Net System allows up to 30 students to work with a Teaching Unit in any laboratory, simultaneously. It is useful for both, Higher Education and/or Technical and Vocational Education.

The Mini ESN system consists of the adaptation of any EDIBON Computer Controlled Unit with SCADA integrated in a local network.

This system allows to view/control the unit remotely, from any computer integrated in the local net (in the classroom), through the main computer connected to the unit. Then, the number of possible users who can work with the same unit is higher than in an usual way of working (usually only one).

Main characteristics:
- It allows up to 30 students to work simultaneously with the EDIBON Computer Controlled Unit with SCADA, connected in a local net.
- Open Control + Multicontrol + Real Time Control + Multi Student Post.
- Instructor controls and explains to all students at the same time.
- Any user/student can work doing 'real time' control/multicontrol and visualisation.
- Instructor can see in the computer what any user/student is doing in the unit.
- Continuous communication between the instructor and all the users/students connected.

Main advantages:
- It allows an easier and quicker understanding.
- This system allows you can save time and cost.
- Future expansions with more EDIBON Units.

For more information see Mini ESN catalogue. Click on the following link: www.edibon.com/products/catalogues/en/Mini-ESN.pdf

ESN. EDIBON Scada-Net System

This unit can be integrated, in the future, into a Complete Laboratory with many Units and many Students.

For more information see ESN catalogue. Click on the following link: www.edibon.com/products/catalogues/en/units/thermodynamics/ESN-thermodynamics/ESN-THERMODYNAMICS.pdf

TRAC/FSS. Faults Simulation System.

Faults Simulation System (FSS) is a Software package that simulates several faults in any EDIBON Computer Controlled Unit. It is useful for Technical and Vocational level.

The “FAULTS” mode consists in causing several faults in the unit normal operation. The student must find them and solve them. There are several kinds of faults that can be grouped in the following sections:

Faults affecting the sensors measurement:
- An incorrect calibration is applied to them.
- Non-linearity.

Faults affecting the actuators:
- Actuators channels interchange at any time during the program execution.
- Response reduction of an actuator.

Faults in the controls execution:
- Inversion of the performance in ON/OFF controls.
- Reduction or increase of the calculated total response.
- The action of some controls is annulled.

On/off faults:
- Several on/off faults can be included.

For more information see FSS catalogue. Click on the following link: www.edibon.com/products/catalogues/en/FSS.pdf

Example of some screens
ORDER INFORMATION

<table>
<thead>
<tr>
<th>Main items (always included in the supply)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum supply always includes:</td>
</tr>
<tr>
<td>1️⃣ Unit: TRAC. Computer Controlled Absorption Refrigeration Unit.</td>
</tr>
<tr>
<td>2️⃣ TRAC/CIB. Control Interface Box.</td>
</tr>
<tr>
<td>3️⃣ DAB. Data Acquisition Board.</td>
</tr>
<tr>
<td>4️⃣ TRAC/CCSOF. Computer Control + Data Acquisition + Data Management Software.</td>
</tr>
<tr>
<td>5️⃣ Cables and Accessories, for normal operation.</td>
</tr>
<tr>
<td>6️⃣ Manuals.</td>
</tr>
</tbody>
</table>

*IMPORTANT: Under TRAC we always supply all the elements for immediate running as 1, 2, 3, 4, 5 and 6.

<table>
<thead>
<tr>
<th>Optional items (supplied under specific order)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Industrial configuration</td>
</tr>
<tr>
<td>7️⃣ PLC. Industrial Control using PLC (it includes PLC-PI Module plus PLC-SOF Control Software):</td>
</tr>
<tr>
<td>- PCL-PI. PLC Module.</td>
</tr>
<tr>
<td>- TRAC/PLC-SOF. PLC Control Software.</td>
</tr>
</tbody>
</table>

b) Technical and Vocational Education configuration

| 8️⃣ TRAC/ICAI. Interactive Computer Aided Instruction Software System. |
| 9️⃣ TRAC/FSS. Faults Simulation System. |

c) Multipost Expansions options

| 1️⃣ Mini ESN. EDIBON Mini Scada-Net System. |
| 2️⃣ ESN. EDIBON Scada-Net System. |
TENDER SPECIFICATIONS (for main items)

1. **TRAC. Unit:***
 - Bench-top unit.
 - Anodized aluminum structure and panels of painted steel.
 - Main metallic elements in stainless steel.
 - Diagram in the front panel with similar distribution to the elements in the real unit.
 - Condenser: finned exchanger.
 - Evaporator.
 - Absorber.
 - Absorption tank.
 - Diagram in the front panel with similar distribution to the elements in the real unit.
 - Solenoid valve.
 - Generator or heater, possibility to select the heat source between an heating element or LPG:
 - Burner and piezoelectric igniter: to ignite the flame of fuel.
 - Pressure regulator with manometer (range 0 - 3 bar) to regulate the LPG inlet pressure to the generator.
 - To work with an electrical heating element:
 - Electrical heater: 230 V, 125 W.
 - Control of power from the computer (SCADA software).
 - **Instrumentation:**
 - Ten temperature sensors distributed at key points of the unit.
 - Sensors for the power, current and voltage consumed by the electrical heating element.
 - The unit includes all the safety measures required for a safe operation:
 - The unit is perfectly watertight to avoid ammonia leakages.
 - Safety pushbutton.
 - The complete unit includes as well:
 - Advanced Real-Time SCADA.
 - Open Control + Multicontrol + Real-Time Control.
 - Specialized EDIBON Control Software based on LabVIEW.
 - National Instruments Data Acquisition board (250 KS/s, kilo samples per second).
 - Calibration exercises, which are included, teach the user how to calibrate a sensor and the importance of checking the accuracy of the sensors before taking measurements.
 - Projector and/or electronic whiteboard compatibility allows the unit to be explained and demonstrated to an entire class at one time.
 - Capable of doing applied research, real industrial simulation, training courses, etc.
 - Remote operation and control by the user and remote control for EDIBON technical support, are always included.
 - Totally safe, utilizing 4 safety systems (Mechanical, Electrical, Electronic & Software).
 - Designed and manufactured under several quality standards.
 - Optional ICAI software to create, edit and carry out practical exercises, tests, exams, calculations, etc.
 - Apart from monitoring user's knowledge and progress reached.
 - This unit has been designed for future expansion and integration. A common expansion is the EDIBON Scada-Net (ESN) System which enables multiple students to simultaneously operate many units in a network.

2. **TRAC/CIB. Control Interface Box:**
 - The Control Interface Box is part of the SCADA system.
 - Control interface box with process diagram in the front panel.
 - The unit control elements are permanently computer controlled.
 - Simultaneous visualization in the computer of all parameters involved in the process.
 - Calibration of all sensors involved in the process.
 - Real time curves representation about system responses.
 - All the actuators’ values can be changed at any time from the keyboard allowing the analysis about curves and responses of the whole process.
 - Shield and filtered signals to avoid external interferences.
 - Real time computer control with flexibility of modifications from the computer keyboard of the parameters, at any moment during the process.
 - Open control allowing modifications, at any moment and in real time, of parameters involved in the process simultaneously.
 - Three safety levels, one mechanical in the unit, another electronic in the control interface and the third one in the control software.

3. **DAB. Data Acquisition Board:**
 - The Data Acquisition board is part of the SCADA system.
 - PCI Express Data acquisition board (National Instruments) to be placed in a computer slot.
 - Analog input: Channels= 16 single-ended or 8 differential. Resolution= 16 bits, 1 in 65536. Sampling rate up to: 250 KS/s (kilo samples per second).
 - Analog output: Channels= 2. Resolution= 16 bits, 1 in 65536.
 - Digital Input/Output: Channels=24 inputs/outputs.

4. **TRAC/CCSOF. Computer Control + Data Acquisition + Data Management Software:**
 - The three softwares are part of the SCADA system.
 - Compatible with the industry standards.
 - Flexible, open and multicontrol software, developed with actual windows graphic systems, acting simultaneously on all process parameters.
 - Management, processing, comparison and storage of data.
 - Sampling velocity up to 250 KS/s (kilo samples per second).
 - Calibration system for the sensors involved in the process.
 - It allows the registration of the alarms state and the graphic representation in real time.
 - Open software, allowing the teacher to modify texts, instructions. Teacher’s and student’s passwords to facilitate the teacher’s control on the student, and allowing the access to different work levels.
 - This unit allows the 30 students of the classroom to visualize simultaneously all the results and the manipulation of the unit, during the process, by using a projector or an electronic whiteboard.

5. **Cables and Accessories,** for normal operation.

6. **Manuals:**
 - This unit is supplied with 8 manuals: Required Services, Assembly and Installation, Interface and Control Software, Starting-up, Safety, Maintenance, Calibration & Practices Manuals.

www.edibon.com
Exercises and Practical Possibilities to be done with the Main Items

1. Demonstration of the refrigeration process.
2. Demonstration of the vapor absorption refrigeration cycle and visualization of the most important processes.
3. Familiarisation with the individual components of the absorption refrigeration unit.
4. Operation of the gas absorption refrigeration unit using either an electric element or LPG as the heat source.
5. Comparison of the refrigeration temperature obtained using LPG or an electrical element as heat source.
6. Measurement of the electrical power.
7. Influence of the electrical power in the refrigeration temperature obtained.
8. Measurement of the temperature in the main points of the absorption refrigeration process.

Additional practical possibilities:

Other possibilities to be done with this Unit:

10. Many students view results simultaneously.
 - To view all results in real time in the classroom by means of a projector or an electronic whiteboard.
11. Open Control, Multicontrol and Real Time Control.
 - This unit allows intrinsically and/or extrinsically to change the span, gains; proportional, integral, derivate parameters; etc, in real time.
12. The Computer Control System with SCADA allows a real industrial simulation.
13. This unit is totally safe as uses mechanical, electrical and electronic, and software safety devices.
14. This unit can be used for doing applied research.
15. This unit can be used for giving training courses to Industries even to other Technical Education Institutions.
16. Control of the TRAC unit process through the control interface box without the computer.
17. Visualization of all the sensors values used in the TRAC unit process.
 - By using PLC-PI additional 19 more exercises can be done.
 - Several other exercises can be done and designed by the user.
TENDER SPECIFICATIONS (for optional items)

a) Industrial configuration

PLC. Industrial Control using PLC (it includes PLC-PI Module plus PLC-SOF Control Software):

-PLC-PI. PLC Module:
 - Metallic box.
 - Circuit diagram in the module front panel.
 - Digital inputs (X) and Digital outputs (Y) block: 16 Digital inputs. 14 Digital outputs.
 - Analog inputs block: 16 Analog inputs.
 - Analog outputs block: 4 Analog outputs.
 - Touch screen.
 - Panasonic PLC:
 - High-speed scan of 0.32 µsec. Program capacity of 32 Ksteps. High-speed counter. Multi-point PID control.
 - Digital inputs/outputs and analog inputs/outputs Panasonic modules.

-TRAC/PLC-SOF. PLC Control Software:
 - For this particular unit, always included with PLC supply.
 - Practices to be done with PLC-PI:
 1. Control of the particular unit process through the control interface box without the computer.
 2. Visualization of all the sensors values used in the particular unit process.
 3. Calibration of all sensors included in the particular unit process.
 4. Hand on of all the actuators involved in the particular unit process.
 5. Realization of different experiments, in automatic way, without having in front the particular unit. (These experiments can be decided previously).
 6. Simulation of outside actions, in the cases do not exist hardware elements. (Example: test of complementary tanks, complementary industrial environment to the process to be studied, etc).
 7. PLC hardware general use.
 8. PLC process application for the particular unit.
 9. PLC structure.
 10. PLC inputs and outputs configuration.
 11. PLC configuration possibilities.
 12. PLC program languages.
 13. PLC different programming standard languages (ladder diagram (LD), structured text (ST), instructions list (IL), sequential function chart (SFC), function block diagram (FBD)).
 14. New configuration and development of new process.
 15. Hand on an established process.
 16. To visualize and see the results and to make comparisons with the particular unit process.
 17. Possibility of creating new process in relation with the particular unit.
 18. Own PLC applications in accordance with teacher and student requirements.

b) Technical and Vocational Education configuration

TRAC/ICAI. Interactive Computer Aided Instruction Software System.

This complete software package consists of an Instructor Software (EDIBON Classroom Manager -ECM-SOF) totally integrated with the Student Software (EDIBON Student Labsoft -ESL-SOF). Both are interconnected so that the teacher knows at any moment what is the theoretical and practical knowledge of the students.

-ECM-SOF. EDIBON Classroom Manager (Instructor Software).
 - ECM-SOF is the application that allows the Instructor to register students, manage and assign tasks for workgroups, create own content to carry out Practical Exercises, choose one of the evaluation methods to check the Student knowledge and monitor the progress related to the planned tasks for individual students, workgroups, units, etc...so the teacher can know in real time the level of understanding of any student in the classroom.
 - Innovative features:
 - User Data Base Management.
 - Administration and assignment of Workgroup, Task and Training sessions.
 - Creation and Integration of Practical Exercises and Multimedia Resources.
 - Custom Design of Evaluation Methods.
 - Creation and assignment of Formulas & Equations.
 - Equation System Solver Engine.
 - Updatable Contents.
 - Report generation, User Progression Monitoring and Statistics.

-ESL-SOF. EDIBON Student Labsoft (Student Software).
 - ESL-SOF is the application addressed to the Students that helps them to understand theoretical concepts by means of practical exercises and to prove their knowledge and progression by performing tests and calculations in addition to Multimedia Resources. Default planned tasks and an Open workgroup are provided by EDIBON to allow the students start working from the first session. Reports and statistics are available to know their progression at any time, as well as explanations for every exercise to reinforce the theoretically acquired technical knowledge.
 - Innovative features:
 - Student Log-In & Self-Registration.
 - Existing Tasks checking & Monitoring.
 - Default contents & scheduled tasks available to be used from the first session.
 - Practical Exercises accomplishment by following the Manual provided by EDIBON.
 - Evaluation Methods to prove your knowledge and progression.
 - Test self-correction.
 - Calculations computing and plotting.
 - Equation System Solver Engine.
 - User Monitoring Learning & Printable Reports.
 - Multimedia-Supported auxiliary resources.
Tender Specifications (for optional items)

b) Technical and Vocational Education configuration

TRAC/ FSS. Faults Simulation System.
Faults Simulation System (FSS) is a Software package that simulates several faults in any EDIBON Computer Controlled Unit. The "FAULTS" mode consists in causing several faults in the unit normal operation. The student must find them and solve them. There are several kinds of faults that can be grouped in the following sections:
- Faults affecting the sensors measurement:
 - An incorrect calibration is applied to them.
 - Non-linearity.
- Faults affecting the actuators:
 - Actuators channels interchange at any time during the program execution.
 - Response reduction of an actuator.
- Faults in the controls execution:
 - Inversion of the performance in ON/OFF controls.
 - Reduction or increase of the calculated total response.
 - The action of some controls is annulled.
- On/off faults:
 - Several on/off faults can be included.

Mini ESN. EDIBON Mini Scada-Net System.
EDIBON Mini Scada-Net System allows up to 30 students to work with a Teaching Unit in any laboratory, simultaneously. The Mini ESN system consists of the adaptation of any EDIBON Computer Controlled Unit with SCADA integrated in a local network. This system allows to view/control the unit remotely, from any computer integrated in the local net (in the classroom), through the main computer connected to the unit.
Main characteristics:
- It allows up to 30 students to work simultaneously with the EDIBON Computer Controlled Unit with SCADA, connected in a local net.
- Open Control + Multicontrol + Real Time Control + Multi Student Post.
- Instructor controls and explains to all students at the same time.
- Any user/student can work doing “real time” control/multicontrol and visualisation.
- Instructor can see in the computer what any user/student is doing in the unit.
- Continuous communication between the instructor and all the users/students connected.
Main advantages:
- It allows an easier and quicker understanding.
- This system allows you can save time and cost.
- Future expansions with more EDIBON Units.

The system basically will consist of:
This system is used with a Computer Controlled Unit.
- Instructor’s computer.
- Students’ computers.
- Local Network.
- Unit-Control Interface adaptation.
- Unit Software adaptation.
- Webcam.
- Mini ESN Software to control the whole system.
- Cables and accessories required for a normal operation.

Specifications subject to change without previous notice, due to the convenience of improvement of the product.