Computer Controlled Organic Rankine Cycle Unit, with SCADA and PID Control

**TORC**

*Unit: TORC. Computer Controlled Organic Rankine Cycle Unit*

### Key features:

- **Advanced Real-Time SCADA and PID Control.**
- **Open Control + Multicontrol + Real-Time Control.**
- **Specialized EDIBON Control Software based on LabVIEW.**
- **National Instruments Data Acquisition board (250 KS/s, kilo samples per second).**
- **Calibration exercises, which are included, teach the user how to calibrate a sensor and the importance of checking the accuracy of the sensors before taking measurements.**
- **Projector and/or electronic whiteboard compatibility allows the unit to be explained and demonstrated to an entire class at one time.**
- **Capable of doing applied research, real industrial simulation, training courses, etc.**
- **Remote operation and control by the user and remote control for EDIBON technical support, are always included.**
- **Totally safe, utilizing 4 safety systems (Mechanical, Electrical, Electronic & Software).**
- **Designed and manufactured under several quality standards.**
- **Optional ICAI software to create, edit and carry out practical exercises, tests, exams, calculations, etc. Apart from monitoring user’s knowledge and progress reached.**
- **This unit has been designed for future expansion and integration. A common expansion is the EDIBON Scada-Net (ESN) System which enables multiple students to simultaneously operate many units in a network.**

For more information about Key Features, click here

---

**OPEN CONTROL + MULTICONTROL + REAL TIME CONTROL**

www.edibon.com

**PRODUCTS**

- Energy
- And
- Thermodynamics & Thermotechnics

**Teaching Technique used**

EDIBON SCADA System and PID Control included

**Cables and Accessories**

**Manuals**

Computer (not included in the supply)

**Control Interface Box**

**Data Acquisition Board**

**Software for:**
- Computer Control
- Data Acquisition
- Data Management

ISO 9001: Quality Management (for Design, Manufacturing, Commercialization and after-sales service)

European Union Certificate (total safety)

ISO 14001: Environmental Management and Audit Scheme (environmental management)

For more information about Key Features, click here
The Rankine Cycle is a thermodynamic cycle that converts heat into work, constituting what is called a power cycle. The Organic Rankine Cycle (ORC) is essentially a Rankine cycle, where the water steam has been replaced with an organic fluid. In the ORC it is possible to use lower temperatures with high efficiencies, allowing extracting heat from the exhaust of internal combustion engines, from other source of waste heat or any process with a temperature as low as 150 ºC, for example in geothermal energy.

The working principle of the ORC is:
1. The organic liquid fluid is pumped to the evaporator, where changes to gas.
2. It passes through a turbine.
3. Finally, it is converted into liquid with the condenser and the cycle starts again.

GENERAL DESCRIPTION

The Computer Controlled Organic Rankine Cycle Unit, "TORC", allows the student to study the complete process and the components of an organic Rankine Cycle, as well as the main variables that take part in the process. The working fluid (coolant R-245fa) is evaporated by applying a heat source. First of all, the coolant is impelled by a computer controlled pump through a plate exchanger (preheater) through which the tap water heated in the cycle condenser flows in countercurrent.

Then, the organic working fluid passes through two plate exchangers that constitute the cycle evaporator, through which superheated water to 150 ºC (heat source) flows impelled by a pump.

Superheated water is generated in a boiler with a heating element (resistor), which can be controlled through the computer with a PID control, indicating the setpoint to which the water wants to be heated. The boiler has a safety level switch.

After the heat is transferred, the superheated water returns to the boiler at the outlet of the second exchanger.

There is a purge valve in this close circuit of superheated water, a bypass circuit and purgers to remove the air from the circuit.

The organic fluid steam is expanded in the turbine when it reaches the working conditions, generating an electrical power which is measured.

At the outlet of the turbine the organic fluid is condensed by means of a water flow in a plate exchanger.

The tap water heated in the organic fluid condensing process is directed to the preheater to take advantage of the waste heat. The condensate is collected in an intermediate tank, with two level actuators. When the level is enough, the organic fluid is pumped backwards again and the thermodynamic cycle is closed this way.

The cooling and heating sources are not directly in contact with the working fluid or the turbine.

This Computer Controlled Unit is supplied with the EDIBON Computer Control System (SCADA), and includes: The unit itself + a Control Interface Box + a Data Acquisition Board + Computer Control, Data Acquisition and Data Management Software Packages, for controlling the process and all parameters involved in the process.

PROCESS DIAGRAM AND UNIT ELEMENTS ALLOCATION

4 actuators and 21 sensors controlled from any computer, and working simultaneously

INTRODUCTION

GENERAL DESCRIPTION

PROCESS DIAGRAM AND UNIT ELEMENTS ALLOCATION
With this unit there are several options and possibilities:
- Main items: 1, 2, 3, 4, 5 and 6.
- Optional items: 7, 8 and 9.

Let us describe first the main items (1 to 6):

**TORC. Unit:**

Anodized aluminum frame and panels made of painted steel.
The unit includes wheels to facilitate its mobility.
Main metallic elements made of stainless steel.
Diagram in the front panel with distribution of the elements similar to the real one.

**Evaporator:**

Computer controlled (PID control) boiler of 15 kW for superheated water to 150 °C.
It includes:
- Safety valve calibrated to 6 Bar.
- Safety pressure switch as filling safety measure for the boiler.
- Manometer of 0 – 6 Bar.
- Safety thermostat (150 °C).
- Safety level switch.
- Automatic air purger.
- Expansion vessel.
- Automatic feeder regulated to 1.5 Bar.
- Driving pump.

**Three Plate exchangers:**

- Exchanger nº 1 (preheater): six plates, heat transfer area: 0.0480 m².
- Exchanger nº 2: twenty plates, heat transfer area: 0.612 m².
- Exchanger nº 3: twenty plates, heat transfer area: 0.414 m².

**Condenser:**

Exchanger of twenty plates, heat transfer area: 0.720 m².

**Triple piston pump** to impel the organic fluid, with power variator, computer controlled.

**Scroll turbine and generator:** 1 kW, 3600 rpm approx.

**Electric load.**

**Organic fluid condensed tank** with two level actuators.

**R-245fa organic fluid storage tank** with two level actuators.

**High pressure safety pressure switch** to prevent overpressures.

**Two computer controlled solenoid valves.**

**Air purgers.**

**Sight glasses along the circuit** to visualize the state of the organic fluid.

**Sensors:**

- Thirteen "J" type temperature sensors distributed along the process.
- Flow sensor to measure the cooling water flow through the condenser, range: 1.5 – 30 l/min.
- Flow sensor to measure the organic fluid flow through the circuit, range: 0.008 – 0.062 Kg/s.
- Three pressure sensors to measure the outlet pressure of the evaporator and the inlet and outlet pressure of the turbine, pressure sensors range: 0 – 25 Bar.
- Sensor to measure the power consumed by the generator.
- Sensor to measure the power consumed by the pump that impels the organic fluid.
- Speed sensor of the turbine.

The complete unit includes as well:

**Advanced Real-Time SCADA and PID Control.**

Open Control + Multicontrol + Real-Time Control.

**Specialized EDIBON Control Software based on LabVIEW.**

National Instruments Data Acquisition board (250 KS/s, kilo samples per second).

Calibration exercises, which are included, teach the user how to calibrate a sensor and the importance of checking the accuracy of the sensors before taking measurements.

Projector and/or electronic whiteboard compatibility allows the unit to be explained and demonstrated to an entire class at one time.

Capable of doing applied research, real industrial simulation, training courses, etc.

Remote operation and control by the user and remote control for EDIBON technical support, are always included.

Totally safe, utilizing 4 safety systems (Mechanical, Electrical, Electronic & Software).

Designed and manufactured under several quality standards.

Optional ICAI software to create, edit and carry out practical exercises, tests, exams, calculations, etc. Apart from monitoring user's knowledge and progress reached.

This unit has been designed for future expansion and integration. A common expansion is the EDIBON Scada-Net (ESN) System which enables multiple students to simultaneously operate many units in a network.
2. **TORC/CIB. Control Interface Box:**
   The Control Interface Box is part of the SCADA system. **Control interface box with process diagram in the front panel** and with the same distribution that the different elements located in the unit, for easy understanding by the student. All sensors, with their respective signals, are properly manipulated from -10V to +10V computer output. Sensors connectors in the interface have different pin numbers (from 2 to 16), to avoid connection errors. Single cable between the control interface box and computer. The unit control elements are permanently computer controlled, with no need for changes or connections during the whole process test procedure. 
   **Simultaneous visualization in the computer of all parameters involved in the process.**
   Calibration of all sensors involved in the process.
   **Real time curves representation about system responses.**
   Storage of all the process data and results in a file. Graphical representation, in real time, of all the process/system responses. All the actuators’ values can be changed at any time from the keyboard allowing the analysis about curves and responses of the whole process. 
   All the actuators and sensors values and their responses are displayed on only one screen in the computer.

   **Shield and filtered signals to avoid external interferences.**
   Real time PID control with flexibility of modifications from the computer keyboard of the PID parameters, at any moment during the process.

   Real time PID and on/off control for pumps, compressors, heating elements, control valves, etc.

   Real time PID control for parameters involved in the process simultaneously.

   Proportional control, integral control and derivative control, based on the PID mathematical formula, by changing the values, at any time, of the three control constants (proportional, integral and derivative constants).

   **Open control allowing modifications, at any moment and in real time, of parameters involved in the process simultaneously.**

   Possibility of automatization of the actuators involved in the process.

   **Three safety levels, one mechanical in the unit, another electronic in the control interface and the third one in the control software.**

3. **DAB. Data Acquisition Board:**
   The Data Acquisition Board is part of the SCADA system. **PCI Express Data acquisition board (National Instruments)** to be placed in a computer slot. Bus PCI Express.

   **Analog input:**
   Number of channels = 16 single-ended or 8 differential. **Resolution = 16 bits**, 1 in 65536. Sampling rate up to: **250 Ks/s (kilo samples per second)**.
   Input range [V] = ±10 V. Data transfers = DMA, interrupts, programmed I/O. DMA channels = 6.

   **Analog output:**
   Number of channels = 2. Resolution = 16 bits, 1 in 65536. Maximum output rate up to: 900 Ks/s.
   Output range [V] = ±10 V. Data transfers = DMA, interrupts, programmed I/O.

   **Digital Input/Output:**
   Number of channels = 24 inputs/outputs. DI or DO Sample Clock frequency: 0 to 100 MHz.

4. **TORC/CCSOF. PID Computer Control + Data Acquisition + Data Management Software:**
   The three softwares are part of the SCADA system. Compatible with actual Windows operating systems. **Graphic and intuitive simulation of the process in screen.** Compatible with the industry standards.

   Registration and visualization of all process variables in an automatic and simultaneous way. **Flexible, open and multicontrol software**, developed with actual windows graphic systems, acting simultaneously on all process parameters.

   **Analog and digital PID control.**

   PID menu and set point selection required in the whole work range.

   Management, processing, comparison and storage of data. Sampling velocity up to 250 Ks/s (kilo samples per second).

   Calibration system for the sensors involved in the process.

   It allows the registration of the alarm state and the graphic representation in real time. Comparative analysis of the obtained data, after the process and modification of the conditions during the process.

   **Open software, allowing the teacher to modify texts, instructions. Teacher’s and student’s passwords to facilitate the teacher’s control on the student, and allowing the access to different work levels.**

   This unit allows the 30 students of the classroom to visualize simultaneously all the results and the manipulation of the unit, during the process, by using a projector or an electronic whiteboard.

5. **Cables and Accessories, for normal operation.**

6. **Manuals:**
   This unit is supplied with 8 manuals: Required Services, Assembly and Installation, Interface and Control Software, Starting-up, Safety, Maintenance, Calibration & Practices Manuals.

References 1 to 6 are the main items: TORC + TORC/CIB + DAB + TORC/CCSOF + Cables and Accessories + Manuals are included in the minimum supply for enabling normal and full operation.
1.- Demonstration of the Organic Rankine Cycle (ORC).
2.- To measure the heat supplied by evaporator.
3.- Determination of the efficiency of an Organic Rankine Cycle (ORC).
4.- Energy balances determination in the evaporator and the condenser.
5.- Determination of the turbine efficiency.
6.- To make energy balance.
7.- To measure the electrical power generated.
8.- To study the influence of the organic fluid flow and temperatures on the generation of electrical power.
9.- Study of the specific vapour consumption of the turbine.
10.-Speed measurement of the turbine.

Additional practical possibilities:

11.-Sensors calibration.

Other possibilities to be done with this Unit:

12.- Many students view results simultaneously.
   - To view all results in real time in the classroom by means of a projector or an electronic whiteboard.

13.- Open Control, Multicontrol and Real Time Control.
   - This unit allows intrinsically and/or extrinsically to change the span, gains, proportional, integral, derivative parameters; etc., in real time.

14.- The Computer Control System with SCADA and PID Control allow a real industrial simulation.
15.- This unit is totally safe as uses mechanical, electrical and electronic, and software safety devices.
16.- This unit can be used for doing applied research.
17.- This unit can be used for giving training courses to Industries even to other Technical Education Institutions.
18.- Control of the TORC unit process through the control interface box without the computer.
19.- Visualization of all the sensors values used in the TORC unit process.
   - Several other exercises can be done and designed by the user.

**DIMENSIONS AND WEIGHTS**

**TORC:**
- **Unit:**
  - Dimensions: 2500 x 900 x 1800 mm approx.
    - (98.42 x 35.43 x 70.86 inches approx.)
  - Weight: 450 Kg approx.
    - (990 pounds approx.)

**Control Interface Box:**
- **Dimensions:** 490 x 450 x 470 mm approx.
  - (19.29 x 17.71 x 18.50 inches approx.)
- **Weight:** 20 Kg approx.
  - (44 pounds approx.)

**REQUIRED SERVICES**

- Electrical supply: three-phase, 380 V/50 Hz or 208 V/60 Hz, 20 kW.
- Water supply and drainage.
- Computer.
The teacher and the students can calibrate the unit with a password provided by EDIBON. The teacher can restore the factory calibration any time.
SOME REAL RESULTS OBTAINED FROM THIS UNIT

Representation in real time of the measured magnitudes.

Signal versus signal chart where any of the measured variables can be represented.
Real time representation of Rankine Cycle in the Mollier diagram of the coolant.

Some **real** results obtained from this Unit
Real time representation of Rankine Cycle in the Mollier diagram of the coolant.

The boiler temperature control is done through a PID control. When the target temperature is reached at the temperature sensor (ST-8), the boiler is turned off.

Some **real** results obtained from this Unit
As the flow of organic fluid is increased at its optimal conditions to generate work in the turbine, the turning revolutions of the turbine increase and it generates more electric power.

Some real results obtained from this Unit.
Additionally to the main items (1 to 6) described, we can offer, as optional, other items from 7 to 9.
All these items try to give more possibilities for:
a) Technical and Vocational Education configuration. (ICAI)
b) Multipost Expansions options. (Mini ESN and ESN)

a) Technical and Vocational Education configuration

TORC/ICAI. Interactive Computer Aided Instruction Software System.
This complete software package consists of an Instructor Software (EDIBON Classroom Manager - ECM-SOF) totally integrated with the Student Software (EDIBON Student Labsoft - ESL-SOF). Both are interconnected so that the teacher knows at any moment what is the theoretical and practical knowledge of the students.
This software is optional and can be used additionally to items (1 to 6).

- ECM-SOF. EDIBON Classroom Manager (Instructor Software).
ECM-SOF is the application that allows the Instructor to register students, manage and assign tasks for workgroups, create own content to carry out Practical Exercises, choose one of the evaluation methods to check the Student knowledge and monitor the progression related to the planned tasks for individual students, workgroups, units, etc... so the teacher can know in real time the level of understanding of any student in the classroom.

Innovative features:
• User Data Base Management.
• Administration and assignment of Workgroup, Task and Training sessions.
• Creation and Integration of Practical Exercises and Multimedia Resources.
• Custom Design of Evaluation Methods.
• Creation and assignment of Formulas & Equations.
• Equation System Solver Engine.
• Updatable Contents.
• Report generation, User Progression Monitoring and Statistics.

- ESL-SOF. EDIBON Student Labsoft (Student Software).
ESL-SOF is the application addressed to the Students that helps them to understand theoretical concepts by means of practical exercises and to prove their knowledge and progression by performing tests and calculations in addition to Multimedia Resources. Default planned tasks and an Open workgroup are provided by EDIBON to allow the students start working from the first session. Reports and statistics are available to know their progression at any time, as well as explanations for every exercise to reinforce the theoretically acquired technical knowledge.

Innovative features:
• Student Log-In & Self-Registration.
• Existing Tasks checking & Monitoring.
• Default contents & scheduled tasks available to be used from the first session.
• Practical Exercises accomplishment by following the Manual provided by EDIBON.
• Evaluation Methods to prove your knowledge and progression.
• Test self-correction.
• Calculations computing and plotting.
• Equation System Solver Engine.
• User Monitoring Learning & Printable Reports.
• Multimedia-Supported auxiliary resources.

For more information see ICAI catalogue. Click on the following link: www.edibon.com/en/files/expansion/ICAI/catalog
Mini ESN. EDIBON Mini Scada-Net System.

Mini ESN. EDIBON Mini Scada-Net System allows up to 30 students to work with a Teaching Unit in any laboratory, simultaneously. It is useful for both, Higher Education and/or Technical and Vocational Education.

The Mini ESN system consists of the adaptation of any EDIBON Computer Controlled Unit with SCADA and PID Control integrated in a local network. This system allows to view/control the unit remotely, from any computer integrated in the local net (in the classroom), through the main computer connected to the unit. Then, the number of possible users who can work with the same unit is higher than in an usual way of working (usually only one).

Main characteristics:
- It allows up to 30 students to work simultaneously with the EDIBON Computer Controlled Unit with SCADA and PID Control, connected in a local net.
- Open Control + Multicontrol + Real Time Control + Multi Student Post.
- Instructor controls and explains to all students at the same time.
- Any user/student can work doing “real time” control/multicontrol and visualisation.
- Instructor can see in the computer what any user/student is doing in the unit.
- Continuous communication between the instructor and all the users/students connected.

Main advantages:
- It allows an easier and quicker understanding.
- This system allows you can save time and cost.
- Future expansions with more EDIBON Units.

For more information see Mini ESN catalogue. Click on the following link:

ESN. EDIBON Scada-Net System.

This unit can be integrated, in the future, into a Complete Laboratory with many Units and many Students.

For more information see ESN catalogue. Click on the following link:
**ORDER INFORMATION**

<table>
<thead>
<tr>
<th><strong>Main items</strong> (always included in the supply)</th>
<th><strong>Optional items</strong> (supplied under specific order)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum supply always includes:</td>
<td></td>
</tr>
<tr>
<td>1. Unit: TORC. Computer Controlled Organic Rankine Cycle Unit.</td>
<td>a) Technical and Vocational Education configuration</td>
</tr>
<tr>
<td>2. TORC/CIB. Control Interface Box.</td>
<td>7. TORC/ICAI. Interactive Computer Aided Instruction Software System.</td>
</tr>
<tr>
<td>3. DAB. Data Acquisition Board.</td>
<td></td>
</tr>
<tr>
<td>4. TORC/CCSOF. PID Computer Control + Data Acquisition + Data Management Software.</td>
<td>b) Multipost Expansions options</td>
</tr>
</tbody>
</table>

*IMPORTANT: Under TORC we always supply all the elements for immediate running as 1, 2, 3, 4, 5 and 6.*
**TORC. Unit:**
- Anodized aluminum frame and panels made of pointed steel.
- The unit includes wheels to facilitate its mobility.
- Main metallic elements made of stainless steel.
- Diagram in the front panel with distribution of the elements similar to the real one.

**Evaporator:**
- Computer controlled (PID control) boiler of 15 kW for superheated water to 150 °C.
- It includes:
  - Safety valve calibrated to 6 Bar.
  - Safety pressure switch as filling safety measure for the boiler.
  - Manometer of 0 – 6 Bar.
  - Safety thermostat (150 °C).
  - Safety level switch.
  - Automatic air purger.
  - Expansion vessel.
  - Automatic feeder regulated to 1.5 Bar.
  - Driving pump.

**Three Plate exchangers:**
- Exchanger n° 1 (preheater): six plates, heat transfer area: 0.0480 m².
- Exchanger n° 2: twenty plates, heat transfer area: 0.612 m².
- Condenser: exchanger of twenty plates, heat transfer area: 0.720 m².
- Triple piston pump to impel the organic fluid, with power variator, computer controlled.

**Rolling turbine and generator:** 1 kW, 3600 rpm approx.

**Electric load.**
- Organic fluid condensed tank with two level actuators.
- R-245fa organic fluid storage tank with two level actuators.
- High pressure safety pressure switch to prevent overpressures.
- Two computer controlled solenoid valves.
- Air purgers.
- Sight glasses along the circuit to visualize the state of the organic fluid.

**Sensors:**
- Thirteen J type temperature sensors distributed along the process.
- Flow sensor to measure the cooling water flow through the condenser, range: 0.008 – 0.062 Kg/s.
- Three pressure sensors to measure the outlet pressure of the evaporator and the inlet and outlet pressure of the turbine, pressure sensors range: 0 – 25 Bar.

**Speed sensor of the turbine.**

**The complete unit includes as well:**
- Advanced Real-Time SCADA and PID Control.
- Open Control + Multicontrol + Real-Time Control.
- Specialized EDIBON Control Software based on LabVIEW.
- National Instruments Data Acquisition board (250 KS/s, kило samples per second).
- Calibration exercises, which are included, teach the user how to calibrate a sensor and the importance of checking the accuracy of the sensors before taking measurements.
- Projector and/or electronic whiteboard compatibility allows the unit to be explained and demonstrated to an entire class at one time.
- Capable of doing applied research, real industrial simulation, training courses, etc.
- Remote operation and control by the user and remote control for EDIBON technical support, are always included.
- Totally safe, utilizing 4 safety systems (Mechanical, Electrical, Electronic & Software).
- Designed and manufactured under several quality standards.
- Optional ICAI software to create, edit and carry out practical exercises, tests, exams, calculations, etc. Apart from monitoring user’s knowledge and progress reached.

This unit has been designed for future expansion and integration. A common expansion is the EDIBON Scada-Net (ESN) System which enables multiple students to simultaneously operate many units in a network.

**TORC/CIB. Control Interface Box:**
- The Control Interface Box is part of the SCADA system.
- Control interface box with process diagram in the front panel.
- The unit control elements are permanently computer controlled.
- Simultaneous visualization in the computer of all parameters involved in the process.
- Calibration of all sensors involved in the process.
- Real time curves representation about system responses.
- All the actuators’ values can be changed at any time from the keyboard allowing the analysis about curves and responses of the whole process.
- Shield and filtered signals to avoid external interferences.
- Real time PID control with flexibility of modifications from the computer keyboard of the PID parameters, at any moment during the process.
- Real time PID control for parameters involved in the process simultaneously.
- Proportional control, integral control and derivative control, based on the real PID mathematical formula, by changing the values, at any time, of the three control constants (proportional, integral and derivative constants).
- Open control allowing modifications, at any moment and in real time, of parameters involved in the process simultaneously.
- Three safety levels, one mechanical in the unit, another electronic in the control interface and the third one in the control software.

**DAB. Data Acquisition Board:**
- The Data Acquisition board is part of the SCADA system.
- PCI Express Data acquisition board (National Instruments) to be placed in a computer slot.
- Analog input: Channels= 16 single-ended or 8 differential. Resolution=16 bits, 1 in 65536. Sampling rate up to: 250 KS/s (kilo samples per second).
- Analog output: Channels=2. Resolution=16 bits, 1 in 65536.
- Digital Input/Output: Channels=24 inputs/outputs.

**TORC/CCSOF. PID Computer Control + Data Acquisition + Data Management Software:**
- The three softwares are part of the SCADA system.
- Compatible with the industry standards.
- Flexible, open and multicontrol software, developed with actual windows graphic systems, acting simultaneously on all process parameters.
- Analog and digital PID control. PID menu and set point selection required in the whole work range.
- Management, processing, comparison and storage of data.
- Sampling velocity up to 250 KS/s (kilo samples per second).
- Calibration system for the sensors involved in the process.
- Allows the registration of the alarms state and the graphic representation in real time.
- Open software, allowing the teacher to modify texts, instructions. Teacher’s and student’s passwords to facilitate the teacher’s control on the student, and allowing the different work levels.

This unit allows the 30 students of the classroom to visualize simultaneously all the results and the manipulation of the unit, during the process, by using a projector or an electronic whiteboard.

**Cables and Accessories,** for normal operation.

**Manuals:**
- This unit is supplied with 8 manuals: Required Services, Assembly and Installation, Interface and Control Software, Starting-up, Safety, Maintenance, Calibration & Practices Manuals.
Exercises and Practical Possibilities to be done with the Main Items

1.- Demonstration of the Organic Rankine Cycle (ORC).
2.- To measure the heat supplied by evaporator.
3.- Determination of the efficiency of an Organic Rankine Cycle (ORC).
4.- Energy balances determination in the evaporator and the condenser.
5.- Determination of the turbine efficiency.
6.- To make energy balance.
7.- To measure the electrical power generated.
8.- To study the influence of the organic fluid flow and temperatures on the generation of electrical power.
9.- Study of the specific vapour consumption of the turbine.
10.- Speed measurement of the turbine.

Additional practical possibilities:

11.- Sensors calibration.

Other possibilities to be done with this Unit:

12.- Many students view results simultaneously.
   To view all results in real time in the classroom by means of a projector or an electronic whiteboard.
13.- Open Control, Multicontrol and Real Time Control.
   This unit allows intrinsically and/or extrinsically to change the span, gains; proportional, integral, derivative parameters; etc, in real time.
14.- The Computer Control System with SCADA and PID Control allow a real industrial simulation.
15.- This unit is totally safe as uses mechanical, electrical and electronic, and software safety devices.
16.- This unit can be used for doing applied research.
17.- This unit can be used for giving training courses to Industries even to other Technical Education Institutions.
18.- Control of the TORC unit process through the control interface box without the computer.
19.- Visualization of all the sensors values used in the TORC unit process.

- Several other exercises can be done and designed by the user.
b) Multipost Expansions options

EDIBON Mini Scada-Net System.

EDIBON Mini Scada-Net System allows up to 30 students to work with a Teaching Unit in any laboratory, simultaneously. The Mini ESN system consists of the adaptation of any EDIBON Computer Controlled Unit with SCADA and PID Control integrated in a local network. This system allows to view/control the unit remotely, from any computer integrated in the local net (in the classroom), through the main computer connected to the unit.

Main characteristics:
- It allows up to 30 students to work simultaneously with the EDIBON Computer Controlled Unit with SCADA and PID Control, connected in a local net.
- Open Control + Multicontrol + Real Time Control + Multi Student Post.
- Instructor controls and explains to all students at the same time.
- Any user/student can work doing “real time” control/multicontrol and visualisation.
- Instructor can see in the computer what any user/student is doing in the unit.
- Continuous communication between the instructor and all the users/students connected.

Main advantages:
- It allows an easier and quicker understanding.
- This system allows you can save time and cost.
- Future expansions with more EDIBON Units.

The system basically will consist of:
- Instructor’s computer.
- Students’ computers.
- Local Network.
- Unit-Control Interface adaptation.
- Unit Software adaptation.
- Webcam.
- Mini ESN Software to control the whole system.
- Cables and accessories required for a normal operation.

Specifications subject to change without previous notice, due to the convenience of improvement of the product.